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Let j(z) be analytic on the unit disk, and let p*(z) be the best (Chebyshev)
polynomial approximation to j(z) on the disk of degree at most n. It is observed
that in typical problems the "error curve," the image of the unit circle under
(f - p* )(z), often approximates to a startling degree a perfect circle with winding
number n + 1. This phenomenon is approached by consideration of related
problems whose error curves are exactly circular, making use of a classical theorem
of Caratheodory and Fejer. This leads to a technique for calculating approx­
imations in one step that are roughly as close to best as the best approximation
error curve is close to circular, and hence to strong theorems on near-circularity as
the radius of the domain shrinks to 0 or as n increases to 00. As a computational
example, very tight bounds are given for approximation of eZ on the unit disk. The
generality of the near-circularity phenomenon (more general domains, rational
approximation) is discussed.

1. INTRODUCTION

Let n be a Jordan region in the complex plane bounded by a Jordan curve
r, and letf(z) be analytic in n and continuous on ii == n u r. Let Pn be the
set of polynomials in z of degree at most n. Let II 110 denote the supremum
norm on n. The following is the polynomial (Chebyshev) approximation
problem: given f, find a polynomial p*(z) E Pn such that Ilf - P*lla =
infpEPn Ilf - pIIQ' Such a function is a best approximation tofin n. A best
polynomial approximation always exists for this problem, and it is unique
[17].

From the maximum modulus principle it follows that we may dispense
with the interior of ii, attempting only to minimize the norm Ilf - Pllr ==
sUPZEr If(z) - p(z)l· Now for p E Pn , the image (f - p)(T) describes some
curve in the complex plane, which we call the error curve corresponding to
p. The approximation problem may be restated geometrically: What choice
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of p, if any, leads to an error curve which may be contained in a disk of
minimal radius about the origin?

What motivates this paper is the discovery, based on numerical
experiments, that in many cases the error curve (f - p*)(r) has nearly the
shape oj a perfect circle with winding number n + 1. This effect is much
stronger than can be fully explained by simple arguments. It has been
observed in isolated cases before (see [3, 4, 9D, but not accounted for.

Section 2 is devoted to presenting numerical evidence of the near­
circularity phenomenon. In Section 3 we show, using Rouche's theorem, that
if (f - p )(r) is perfectly circular with winding number ~ n + I for some p
then p must be a best approximation, but observe that this can only occur on
the disk if the error functionJ - p is a finite Blaschke product, which implies
that J is itself rational. So our approach becomes the consideration of nearby
problems with exactly circular error curves. In Section 4 we present our tool
for finding such nearby problems: the so-called Caratheodory-Fejer
problem, whose solution is always characterized by a perfectly circular error
curve. The C-F theory is exploited in Section 5 to give a method for
constructing a near-best approximation to J whose error curve is nearly
circular. A posteriori estimates are then presented which show that such an
approximation must be close to best. These results are applied in Section 6 to
show that ifJ is approximated successively on disks of radius R shrinking to
the origin, then as R -t 0 the best approximation error curves approach
perfect circles in shape with a relative deviation of magnitude O(R n+ 2). A
similar result is proved for approximation on the unit disk by polynomials of
degree n as n -t 00.

The Caratheodory-Fejer method is fully constructive, and in Section 7 it
is applied to a familiar test example, approximation of eZ on the unit disk,
allowing us to compute nearly exact best approximations in one step by
solving a matrix eigenvalue problem.

A consequence of a nearly circular error curve is that Lawson's algorithm
for computing best approximations essentially stops converging once it gets
close to the solution.

The near-circularity phenomenon is more general than the case concen­
trated on here: it appears also in rational approximation and in approx­
imation over regions that are not disks. The generality of the phenomenon
and of the techniques used in approaching it here are discussed in the final
section. We find that the Caratheodory-Fejer strategy applies in principle on
any Jordan region.

Two papers which helped to motivate this work are those of Motzkin and
Walsh [11] and SatT [14]. These study zeros of the error functionJ - p* in
the two asymptotic limits R -t 0 and n -t 00, respectively, and their central
results are reproduced here as Theorems Wi and IIi. The work most closely
related to this in spirit is that of S. J. Poreda, who in a sequence of papers
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has been concerned with the winding number and modulus of error curves in
various complex approximation problems. See, for example, [12, 13]; in the
latter, Poreda also makes use of the Caratheodory-Fejer theorem. His main
concern, however, has been the approximation of functions that are not
analytic and therefore cannot be approximated arbitrarily closely by
polynomials.

2. THE NEAR-CIRCULARITY PHENOMENON

Let us begin with our standard computational example: eZ on the unit disk.
The simplest approximation from Pn we might construct would be the first
n + 1 terms of the Taylor series of e" which in fact is also the best approx­
imation to eZ on the unit circle out of Pn in the least-squares sense. Error
curves corresponding to this choice of approximation are shown in the left
column of Fig. 1 for n = 0, 1, and 2. Each error curve has winding number
n + 1 but is not very circular in shape. In the right column of the same
figure, error curves corresponding to the true Chebyshev approximations
(computed numerically-see Section 7) are shown. These too wind n + 1
times, but now for n = 1 and n = 2 the curves are very close to perfect
circles. Let E~in and E* denote the minimum and maximum values of
1(1 - p*)(z)1 on the unit circle. Then in fact we find:

n E~in E* E* -E~in

0 1.082 1.321 0.239
1 0.5559 0.5584 0.25 X 10- 2

2 0.177369 0.177376 0.7 X 10- 5

3 0.043369 0.043369 <0.2 X 10- 6

Plots like those of Fig. 1 are given in [16] for a number of other choices
of j(z) on the unit disk. For n = 2, say, the error curve in "most" cases
deviates from a circle by no more than 1 or 2%. This is true, for example,
for the following analytic functions j(z): )z - 2, In(z - 2), F(z + 3), ee

z
,

arctan(z/2). It is not true, on the other hand, for certain other functions: e6z
,

Z4 + Z5. Figure 2 shows best approximation error curves for the cases
n = 0, 1, 2, 3 for the function j(z) = IIF(z). The behavior here is typical for
a function that shows the near-circularity phenomenon poorly: for n = 1 or
n = 2 the error curve is clearly not a circle, but as n increases it becomes
closer to one, at least along most of its length.

Our computational experience for regions other than the disk is limited,
but the same phenomenon apparently occurs to a weaker extent quite
generally. Figures 3 and 4 give some indication of this. Figure 3 shows
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FIG. I. Error curves for polynomial approximation to eZ over the unit disk. Left column
shows partial sums of the Taylor series, right column shows Chebyshev approximations. Each
pair is plotted on a single scale.

approximation to l/(z - i) over an ellipse, and Fig. 4 best approximation to
eZ over a square. In the latter case no polynomial can ever eliminate the four
corners, since the error function is a conformal map, but even here the error
curve seems to hew closer to a circle along most of its length as n increases.

This is the phenomenon which we would like to understand and exploit.
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FIG. 2. Error curves for best polynomial approximation to fez) = ljT(z) over the unit
disk.

3. PERFECTLY CIRCULAR ERROR CURVES AND BLASCHKE PRODUCTS

If the error curve for some p(z) happens to be a perfect circle with
sufficiently large winding number, we find in an elementary fashion that p
must be p*. This is analogous to one half of the equioscillation theorem for
real Chebyshev approximation. This theorem appeared in [8, 10, 16]. The
same proof works for rational and polynomial approximation, so we state it
in this generality. A rational function of type (n, m) is one which may be
expressed as a quotient pIq with pEPII' q E Pm'

THEOREM 1. Let fez) be analytic in a Jordan region n bounded by r
and continuous on ii. Suppose that r(z) is a rational approximation to f of
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FIG. 3. Error curves for best polynomial approximation to fez) = l/(z - i) over the
ellipse passing through the points ±2, ±4i.

type (n, m), analytic in fl, such that the error function (f - r)(z) maps r
onto a perfect circle about the origin with positive winding number
>n +m + 1. Then r is a best approximation to f over fl among rational
functions of type (n, m) which are analytic in fl.

Proof Suppose on the contrary that there exists some rational function;
of type (n, m) such that Ilf - ;11 < IIf - rll over fl, hence the same over r.
Since (f - r)(r) is a circle, it follows that 1(1 - f)(z)1 < 1(1 - r)(z)1 for every
z E r. Therefore, by Rouche's theorem, r - ; must have the same number of
zeros interior to r as f - r, which must be at least m +n + I by the
argument principle. This is impossible since r -; is rational of type
(n + m, 2m). I
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FIG. 4. Error curves for best polynomial approximation to !(z) = eZ over the square with
corners ± 1±i.

However, as one might expect, a perfectly circular error curve cannot, in
general, be achieved:

THEOREM 2. Let n be a disk, r the boundary circle, and r any rational
function. Let f be analytic in n and continuous on ii, and suppose that f - r
maps r onto a perfect circle about the origin. Then f is rational.

Proof. By the reflection principle, f - r can be extended to a function
meromorphic in the plane whose poles and zeros are symmetric with respect
to r. As f - r is analytic at the origin, this extension has at worst a pole at
infinity. Thus it is in fact meromorphic in the extended plane, hence rational.
Therefore f is rational also. I
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We can be more concrete. It is well known that the set of rational
functions which are analytic in the unit disk and map the unit disk onto itself
are the finite Blaschke products

A TI:~I (z - (k)

TILl ((k Z - 1)'

where K is finite, each root (k satisfies I(k I< 1, and A is a constant of
modulus 1. If we let A take on any complex value, we obtain the set of maps
which map the unit circle onto any circle about the origin. If we fix
K = n + 1 as suggested by Theorem 1 we see that the space of
n + 1 - winding Blaschke products has complex dimension n + 2. In other
words, there are quite a lot of them-which will be the basis of our success
in finding that the problem of approximating a given function f(z) is
typically very near to a related problem in which an exactly circular error
curve can be achieved. This approach is an extension of that in [1], where
Blaschke products are considered that have one free zero anywhere in the
unit disk but the remaining n at the origin.

4. THE CARATHEODORY-FEJER THEOREM

We may restate the polynomial approximation problem on the disk as
follows: Given the tail of a power series,f(z)=cn+,zn+' +cn +2z n + 1 + "',
analytic in the unit disk, how can f(z) be extended backwards by adding a
polynomial Co + ... + cnzn in such a way that IIL~o Ckzkll is minimized?
The reverse of this problem is the Carathiodory-Fejer approximation
problem: Given a polynomial p(z) = Co + ... +cnzn, how can p(z) be
extended to a power series, analytic in the unit disk, of minimal norm?

In polynomial approximation we have only n + 1 coefficients to choose,
but in C-F approximation we have an infinite number. So perhaps it is not
surprising that in the C-F case, the appearance of a circular error curve is
not only a sufficient but also a necessary condition for a best approximation:

THEOREM 3 (Caratheodory and Fejer). Given v;;;;: 0 and a polynomial
p(z) = Co + ... + cvzv, there exists a unique power series extension q(z) =
Co + ... + cvZv +Cv+I ZV + I + .. , which is analytic in the unit disk and
minimizes II q II among all such analytic extensions. Moreover, q(z) is a finite
Blaschke product with at most v zeros in the disk, and it is the only extension
of p(z) to a finite Blaschke product with at most v zeros in the disk that is
analvtic in the disk.

Proof. See Ref. [5, pp. 497-506] or [6, pp. 154-163]. I
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The similarities between the polynomial approximation problem and the
C-F approximation problem are many and close. In both cases existence and
uniqueness of a best approximation are assured. As another example,
Rouche's theorem may be used to prove that "circular implies best" in the
C-F problem as it was in the polynomial case (previous section). We argue:
Suppose that q(z) is a power series extension of p(z) which maps the unit
circle onto a circle of winding number at most v. Suppose q(z) is another
extension of p(z) such that II qll ~ II q lion the disk. Then by Rouche's
theorem, q - q has at most v zeros in the disk. This contradicts the fact that
its Taylor series begins with a term of order at least v + 1.

The advantage of the C-F problem is that its solution is relatively simple,
and in fact it can be computed easily. Following [5, p. 497 ff.], suppose we
are given p(z) = Co + ... + cvzv and extend it to a Blaschke product

where now A is real and positive. Multiplying through formally by the
denominator, we obtain in succession

AUv= coao,

AUv_1 = COal + c1ao'

If each ck is real, then the solution of these equations reduces to the eigen­
value problem for the (n + 1) X (n + 1) Hankel matrix

[

CO]_ 0 . Co c lA= . .

co·' '~l ;v
Again using Rouche's theorem, the desired A can be shown to be the largest
of the absolute values of the eigenvalues of this matrix, and coefficients ak

are given by any corresponding eigenvector (a v "'" aof. (The non-maximum
eigenvalues correspond to Blaschke products which have poles inside the unit
disk.)

If the coefficients ck are not necessarily real, it can be shown that the
correct A is now the largest singular value of the same Hankel matrix A, and
that any corresponding right singular vector in a singular value decom­
position A = [jEc;H provides a suitable set of coefficients {a k }.
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Given f(z) analytic on the unit disk, we now apply the
Caratheodory-Fejer theorem to construct an approximation pCJ(z) whose
error curve is very close to circular. From the near-circularity it will be
possible to show by a posteriori arguments that pcJ is close to p*, and
therefore that p* also has a nearly circular error curve.

We depend upon two transformations that leave any Chebyshev approx­
imation problem on the unit circle essentially unchanged: multiplication of
all terms by a fixed power ZN for any integer N (positive or negative), and
replacement of z by l/z. Combining these two, we see that the problem of
extending Cn + 1zn + 1 + Cn + 2 Zn + 2 + ... backwards to degree 0 with minimal
norm on the unit circle is equivalent to the problem of extending
... + C zN-(n+J) + C zN-(n+2) + C zN-(n+ll a series extending back

n+3 n+2 n+1 '

towards degree -00, forwards to degree N with minimal norm (on the circle,
not the disk). The latter problem may be solved approximately by truncating
the terms of negative degree, applying the Caratheodory-Fejer theorem with
v = N - (n + 1), and then truncating terms of degree greater than N. This is
our central computational technique, which we shall call the
CaratModory-Fejer (CF) method.

Here is a more precise statement of the method. It is nothing more than a
repetition of the C-F theory of the last section with the subscripts changed
to reflect the multiplication by ZN and inversion z f------> l/z.

(1) Given n ~ 0 and f(z) = L;:'~ n+ I ckzk, pick N > n large enough so
that L;:'~N+ 1 CkZ

k may be considered negligible. Construct the (N - n) X
(N - n) Hankel matrix

[

. c
N

]_ 0 CN - I
A- . .

CN"~~_I ~n+1

(2) Find the largest singular value A. of A and corresponding right
singular vector a = (a l , ... , aN_n)T in any singular value decomposition of A
of the form A = tJEUH

• If all Ck are real it suffices to take A. as the largest
eigenvalue of A in absolute value and a as a corresponding re.al eigenvector.

(3) The Blaschke product

N

"\'
.;,..,.

k~ -co

- - N-n-I
k 1 N aN - n + ... + a l z

C z =/l,Z
k a

l
+ ... + a ZN n I

N-n
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now represents an extension off to degree -00 with winding number at least
n + 1 on Iz 1= 1. The CF near-best approximation is defined by

n

pC!(z) = - I CkZk.
k~O

If aN - n =1= 0, the coefficients ck can be computed one by one by the
recurrence formula

k = n, n - 1,... ,0, which is based on matching coefficients of Zk in the
formula above.

(4) Further applications of the same recurrence relation give the coef­
ficients C -1' C _ 2 ,.... Computing a few of these can give an estimate of
Lk~-CX) Ickl, hence an approximate bound on how far f - pC! deviates from a
circle on Iz I= 1.

Once pC! is computed for a given f and n, f - pC! will typically be nearly
circular on Iz I= 1 with winding number ~ n + 1. In this case it follows
quickly by Rouche's theorem that the minimum error attained by pC! is a
lower bound for Ilf - p* II. This is a direct extension of Theorem 1, and
analogous to the bound of de la Vallee Poussin in real Cebyshev approx­
imation:

THEOREM 4. Let f(z) be analytic in a Jordan region Q bounded by r
and continuous on n, and let p(z) be any polynomial of degree ~ n. Iff - p
has winding number ~ n + 1 on r, then

min IU - p)(z)1 ~ Ilf - p* II ~ Ilf - pll,
zef •

where p* is the best approximation to f of degree ~ n over Q.

Proof The right-hand inequality comes from the definition of p*, and the
left-hand inequality follows from Rouche's theorem as in Theorem 1. I

Theorem 4 relates Ilf - pC!1I to Ilf - p* II; we would like to complement it
by relating pC! to p* directly. For this a lemma on the image of the unit disk
under a polynomial is needed:

LEMMA 5. Let p(z) = a1z + ... +avzv, ak E iC. Then the image of the
unit disk under p covers every point of the disk about °of radius 2- v II p II.

Proof Suppose p(z) fails to achieve, say, the value 1 in the unit disk.
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Then 1- p(z) can be written n~=, (l-zlz k ) with IZkl > 1 (possibly (0) for
each k. At any point z in the disk, therefore, -p(z) = n~=, (1 + ak ) - 1,
with lakl < 1. Expanding this product in terms of symmetric polynomials in
the ak , it follows that

IIp(z)11 < (~ ) + (; ) + ... + (:) = 2" - 1.

The lemma is a consequence of this inequality. I
A bound on II pC! - p* II now follows from Lemma 5.

THEOREM 6. Let f be analytic on the unit disk and let p be a polynomial
of degree ~ n. Suppose Ilf - p - cz n+ III ~ a lei for some a < 1 and c E C,
and suppose Ilf - pll- min1zl=, l(f - p)(z)1 ~ ofor some 0> O. Then

II p - p* II ~ 2n
+lo/~,

where p* is the best approximation to f of degree n on the unit disk.

Proof From the first assumption it is not hard to see that the function
(f(z) - p(z))1czn+ I maps the unit disk onto a region in the right half plane
all of whose points have complex argument at most sin - I a in amplitude. If a
real number 11 ;> 0 is added t~such po~nt, its ~odulus must incr~ase.by

at least 11 cos(sm- I a) = 111v' 1 - a2
• Now smce p* IS the best approxImatIon

to f, adding p - p* to f - p cannot increase the maximum modulus off - p,
hence cannot increase the modulus l(f - p )(z)1 by more than 0 at any point
with Izi = 1. Equivalently, adding (p - p*)lczn+ 1 to (f - p)lczn+ 1 cannot
increase the latter's modulus by more than oil cl at any such poirlt. Putting
these facts together, we must have that Whenjer (p - p*)lczn +1 is real and
positive on Iz I= 1, it is no greater than oil cI 1 - a~emma 5, after an
inversion z H liz, this implies lip - p* II ~ 2n + 'Ojv' 1 - a2

• I
Theorems 4 and 6 are fully practical estimates, useful for the analysis both

of asymptotic error curve behavior (next section) and of particular computed
examples (Section 7).

6. NEAR-CIRCULARITY AS R -+ 0 AND n -+ 00

Here we analyze pC! in two asymptotic limits: for fixed degree n on a disk
whose radius R shrinks to 0, and for n -+ 00 on the fixed unit disk. In each
case pC! is assumed to be constructed with N = 2n + 2, but the results hold
equally if pC! is based on any larger N.

We begin with a key lemma on the dependence of the CF extension
(Theorem 3) on the given polynomial coefficients.
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LEMMA 7. Let R > 0 and v~ 1 be fixed, and let p(z) = RVco +
W-Iclz+ ... +Rcv_IZV-I+zv have coefficients satisfying ICkl~1 for
o~ k ~ v-I. Let p be extended according to the C-F theorem to a power
series

analytic in the unit disk with minimal norm Ilqll. Then if R ~ 1/13, we have
Idv+kl < 3V(6R)k for all k ~ I, and q has winding number v on the unit circle.

Proof Let us adopt the following notation:

SR: circle of radius R about the origin,

DR: closed disk bounded by SR,

II~IIR: sup 1~(z)l,
ZED R

1111=11111'
Now q has minimal norm of all analytic extensions of p to a power series.

Considering the trivial extension d v +k = 0 (V k ~ 1) therefore yields the
bound Ilqll ~ Ilpll, hence Ilq - pll ~ 211pll < 2/(1 - R). Dividing q - p by
ZV + 1 and applying the maximum modulus principle extends this to
Ilq-PllaR«aR)"+12/(I-R) on the disk DaR' where 1 <a~IIR. On
DaR we also have II p - ZV liaR ~ W + aR v + ... + av-1R v <
RVav- 1/(1-1/a)=(aR)"/(a-I). Adding these bounds together gives
Ilq - zVllaR < (aR)" [2aRI(1 -R) + I/(a - 1)]. On the other hand IlzvllaR =
(aR)". Thus if 2aRI(I-R)+I/(a-l)~I, Ilq-zVllaR<llzvllaR' The
condition R ~ 1/13 is enough to ensure this with a = 3. Applying Rouche's
theorem, it follows that q(z) has v zeros in the disk D 3R •

Thus q(z) is a finite Blaschke product

with all its zeros inside D 3R and poles outside D I13R • This proves the winding
number claim. Moreover, we can bound Idv+kl by applying Cauchy's
estimate using the circle S V6R' We find

(1/6R + 3R)" I
Idv+kl < 1,11 (1/2)" X (1/6R)"+k

2v

<-- (1 + 18R 2
)" (6R)k

l-R

< 3V (6Rt I
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From Lemma 7 it can now be shown that I - pC! has a nearly circular
error curve.

LEMMA 8. Let R ~ 1/36 befixed and positive and supposel(z) = zn+! +
Rcn+2zn+2+R2cn+3Zn+3 + ... with Ickl ~ 1 for k ~ n + 2. Let pC/(z) be the
CF approximation to f described in the previous section, with N = 2n + 2.
Then

and f - pCI has winding number n + 1 on Iz I= 1.

Proof The first step of the CF method is to truncate f to form IT(z) ==
zn+I+"'+C2n+2Rn+lz2n+2. We have immediately Ilf-fTII~

W+ 2/(1 - R). Now applying the C-F theorem by way of the substitution
z H liz and multiplication by z2n+2, as described in the last section, leads to
a minimal-norm extension of fT to degree -00: IT(z) = .. , +C_1Z- 1+
Co + ... + C2n +2Rn+Iz 2n+2. pCI is the negative of the portion of IT from

degree 0 to n. From Lemma 7 now follows the bound ICn+l-kl < 3n+ I (6R/
for k> O. Thus Ic-II < 3n+1(6RY+ Z, Ie -21 < 3n+1(6RY+ 3, etc., and therefore

II
-I II (6Ry+ 2 (18R)n+2

lilT - (fT - pC!)11 = )~ C zk < 3n+1 = .
k=~OO k 1 - 6R 3(1 - 6R)

Combining the two inequalities yields

lilT - (f - pC/)11 ~ lilT - (fT - pC/)11 + Ilf - fT11

(18RY+ 2 Rn+2

< 3(1 - 6R) + 1 - R .

Since n ~ 0 and R ~ 1/36 it follows readily that

lilT - (f - pC/)11 < !(18Ry+2.

The first assertion now follows from the fact that jT has constant modulus
on Izi = 1.

IljT11 must satisfy 1-RI(1-R)~IIITII=ljT(z)1 (for Izl=l), for
otherwise it would be possible to approximate zn +1 by terms of degree -00

through n with maximum error less than 1. The winding number statement of
Lemma 7 implies that jT has winding number - [n + 1 - (2n + 2)1= n + 1.
The winding number assertion now follows from these two facts by Rouche's
theorem, since we have lilT - (f - pCI)11 < !(18Ry+2 < 1 - RI(l - R) ~
min1zl=lljT(z)l· I

Thus f - pcl has a nearly circular error curve. Combining this with
Theorem 6 will show that Ilpcl - p*11 = O(R n+2):
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THEOREM 9. Let I and p be as in Lemma 8, and now assume R ~ 1/36
and R ~ 1/4vn+l. Then II pC! - p*11 < (36Ry+2, where p* is the best
approximation to I of degree ~ n on the unit disk.

Proof Combining Theorem 6 and Lemma 8, it is clear that if
III - pC! - zn+lll ~ a for some a < 1, then

1/2~ equals 1 when a = 13/2, so it remains to show
III - pC! - zn+ III ~ 13/2.

JT is the extension of IT towards degree - 00 of minimal norm. In
particular, we must have

lilT II ~ lilT - cn+2Rzn ll

=11-cn+2Rzn+zn+l+ .,. +C2n+2Rn+lz2n+211

= II-cn+2Rz-l + 1+ cn+2Rz + ... +C2n+2Rn+lzn+lll

n+2
~11-cn+2Rz-l + 1 +cn+2Rzll + L Icn+kI Rk- 1

k=3

~ 111 + 2iR Im(cn +2 z)11 + R2/(I-R)

~ VI + (2R)2 +R2/(1-R).

(This computation follows SafT [14].) For R ~ 1/36, therefore, IIlT I1 2 <
1 + 8R 2

•

Let II ·112 be the mean-square norm: II~II~ == (1/2n) 51~(eillt dO. Then
IIJTlli ~ IIJTI1 2

, and also IIJTII~ is the sum of the squares of the magnitudes of
the Laurent coefficients ofJT. Therefore LZ=o Ick l2 < 8R 2

, from which

follows and hence

Adding 111- zn+ III to this gives, finally,

R
III - pCf _zn+111 ~ V8R vn+l + 1-R < 3R vn+l

and with R ~ I/4vn+l this is less than fi/2. I
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Theorem 9, combined with Lemma 8, implies directly that under
appropriate hypotheses p* interpolates f at exactly n + 1 points in the
domain disk. This must be true, for example, if any function f analytic at 0 is
approximated on a disk of radius R sufficiently small. This result was proved
a number of years ago by Motzkin and Walsh [11]. Similarly, it must be
true on the unit disk for large enough n if f(z) = L~=o CkZk is entire and
satisfies limk~oo yk Iek+ liCk 1= O. This result is also known, and due to
Saff [14].

Much more, however, follows from Theorem 9 and its predecessors. First,
consider approximation on disks whose radii shrink to O.

THEOREM 10. Let n ~ 0 be fixed, let f(z) be analytic at z = 0 with
pn+ I)(O)/(n + I)! = cn+1 *0, and let p; and pC; be the best and CF approx­
imation of degree ~ n to f, respectively, on the disk Iz I= R. Then as R -- 0,
for all sufficiently small R,

(i) f - p; has winding number exactly n + 1 on Izl = R,

(ii) Ilf - p;IIR = [1 + O(R n+2
)] Ilf - pC;IIR = [1 +O(R)] Icn+11 Rn+1

,

(iii) IlpC;- p:IIR = O(R n+2
) Ilf - p;IIR'

(iv) Ilf - p;IIR - minlzl=R 1([ - p;)(z)1 = O(R n+2
) Ilf - p;IIR·

Proof For each radius R, we first rescale the problem to the unit disk by
replacing z by Rz, then divide by cn+ 1R n+ 1 to make the results of this
section directly applicable. Clearly Ilf-p;ll=[1 +O(R)]lcn+IIRn+1

•

Now (iii) follows from Theorem 9, and the remainder of (ii) follows from
(iii). Finally (i) and (iv) follow from (ii), (iii), and Lemma 8. I

It is easy to derive a similar theorem for n -- co on the fixed unit disk:

THEOREM 11. Let f be an entire function L~=o CkZk such that
yk Ick+llckl-- 0 as k -- co. Let R >0 be arbitrary. Let P: and p'! be the
best and CF approximations to f of degree ~ n, respectively, on Iz I= 1. Then
as n -- co, for all sufficiently large n,

(i) f - P: has winding number exactly n + 1 on Izi = 1,

(ii) Ilf - p:11 = [1 + O(W+ 2
)] Ilf - p'!ll = [1 + O(R)] Ien+ll,

(iii) lip,! - P: II = O(R n+2
) Ilf - P: II,

(iv) Ilf - P: II - min lz 1= 11([ - p:)(z)1 = O(W +2) Ilf - P: II.

Statement (ii) still holds if the factor yk is removed from the hypothesis.

Proof The assumption on the coefficients implies that for all sufficiently
large n the conditions of Theorem 9 are satisfied. From here the proof is just
as in Theorem 10. For (ii) it suffices to apply Theorem 4 to Lemma 8. I
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Note that by Cauchy's estimate, the bounds on II pC! - p* II in
Theorems lO(iii) and l1(iii) imply the same bounds for each coefficient of
pC! - p* (in the former case, scaled by powers of R).

The estimates of this section have too much slippage to be of much use
except for asymptotic arguments. In practice, however, the asymptotic
behavior indicated by Theorems 10 and 11 is typically observed in
numerical experiments even when R is not very small and n is not very large.

Related results may be found in [1, 14, 11]; the latter also uses the same
construction as that used in our proof of Lemma 7. However, the strength of
the estimates in these papers is essentially O(R) or O(R 2

) rather than
O(R n+ 2

).

7. COMPUTATIONAL EXA.MPLE: eZ ON THE UNIT DISK

We will now consider in detail the approximation of eZ on the unit disk.
For this problem the true best approximation error curves are exceedingly
close to circles, and the CF method described in Section 5 yields correspon­
dingly excellent results. Compare the bounds given in [1, 14].

For reference, we of course want to know the coefficients of the true best
approximations P:. Computing these accurately is not an easy matter. Most
of our work has used Lawson's algorithm (see [3, 4, 9J), a procedure which
finds the best Chebyshev approximation by solving a sequence of weighted
least-squares approximation problems. After step k, the current weight
function W

1k
) is updated according to the formula

But from this formula it is apparent that to the extent that the error curve
(f - plk»(r) is circular, no update takes place at all. Thus we see that
although it is suitable for getting close to a best approximation, for many
problems Lawson's algorithm converges asymptotically at an unacceptably
slow rate. Indeed, for approximation of f(z) = eZ with n = 2, each additional
digit of accuracy would require on the order of 106 iterations. This problem
is presented in detail in [16, pp. 21-34].

A more promising approach is to formulate the Chebyshev approximation
problem as a problem of minimizing a function, namely, Ilf - pll, of n + 1
complex variables, namely, the coefficients ck • This problem may be solved
numerically by any sufficiently robust multidimensional minimization
program, but the convergence will normally be poor because Ilf - pll is
necessarily nondifferentiable at the optimal point {cd. It is better to use a
method designed for this particular problem (see, e.g., (7 J).
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TABLE I

Properties of Various Approximations to eZ on the Unit Disk for n = 0, 1,2

(I) TRUE BEST APPROXIMATION

n=O
n=1
n=2

p*(z) = -0.4495742
p*(z) = 0.0149 - 0.1756z
p*(z) = 0.0001813 + 0.0021708z - 0.0432585z 2

Em;n = 1.082
E min = 0.5559
E min = 0.177369

E = 1.321
E =0.5584
E=0.177376

E - E min = 0.239
E - E min = 0.0025
E ~ E min = 0.7 X 10- 5

(4) CF BASED ON TAYLOR COEFFICIENTS n + I THROUGH 2n + 2 (N = 2n + 2)

p(z) = -0.414214 [A. = 1.2071 j E min = 1.046 E = 1.326
p(z)=0.0189255-0.1741693z [A.=0.55702j E min =0.5522 E=0.5630
p(z) = 0.000267511 + 0.00219986z - 0.04325227z 2 E min = 0.177271 E = 0.177497

[A. = 0.177372391

Z
tT'!
;I>
:;tl

n
;a
(")

c:
t'"'
;I>

~..,
-<
o
'T1

tT'!
:;tl
:;tl
o
:;tl

(")

c:
:;tl
<:

.tT'!

E -Emin = 0.196
E - E min = 0.0175
E - E min = 0.0032

E - E min = 0.280
E - E min = 0.0108
E - E min = 0.23 X 10 3

E ~ E min = 1.086
E - E min = 0.350
E - E min = 0.0862

E=1.718
E = 0.718
E = 0.218

E min = 0.632
E min = 0.368
E min = 0.132

(2) PARTIAL SUMS OF TAYLOR SERIES

(3) CF, DROPPING HIGHER-ORDER TERMS IN R

Em;n = 1.132 E = 1.329
E min = 0.5480 E = 0.5655
E min =0.1757 E=0.1789

p(z) =0
p(z) = 0 + Oz
p(z) = 0 + Oz + OZ2

p(z) = -0.5
p(z) =0.01389 - 0.16667z
p(z) = 0.00017361 +0.0020833z - 0.041 667z 2

n=O
n=1
n=2

n=O
n = I
n=2

n=O
n = I
n=2

n=O
n = I
n=2

(5) CF BASED ON TAYLOR COEFFICIENTS n + I THROUGH 00 (N ~ n)

p(z) =-0.54475 [A. = 1.2584J E min = 1.173 E= 1.344
p(z) = 0.0145209 - 0.1761860z [A. = 0.55752907 J E min = 0.5565 E = 0.5586
p(z) = 0.000180862 + 0.00217 I2208z - 0.04325992458z 2 E min = 0.1773708 E = 0.1773767

[A. =0.177373815]

E - E min = 0.171
E - E min = 0.0021
E - E min = 0.58 X 10

w
0\
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Table I lists some properties of five different sets of approximations to eZ

on the unit disk. To begin with, set (1) presents actual best approximations
for n = 0, 1,2. Inconsistently, throughout this table p(z) represents not an
approximation to eZ

, but an extension of the tail of the Taylor series for eZ

from degree n + 1 back to degree O. All the approximations in Table I have
error curves with winding number n + 1, so Theorem 4 is always applicable.
The assumptions of Theorem 6 are also satisfied for each approximation with
n = 1 or n = 2 (taking C =! and ~, respectively).

Next, set (2) shows the corresponding numbers for approximation by
partial sums of the Taylor series.

As a first step using the CF approach, we can compute with pencil and
paper an approximation that is much better than the truncated Taylor series,
by pretending that the radius R = 1 of the unit disk is small and dropping
terms of higher order in R. Thus, for example, suppose (n = 1) we seek lck}
such that

maps the unit circle to a 1 + 1 = 2-winding circle. Then we must have, for
Izl= 1, h(z)h(z)=,F~(!R2)2+0(R5). Enforcing this condition on the
product hh termwise, and using the fact that i = 1/z, we derive, after a little
manipulation,

1 4 (5
Co = 72 R + 0 R ),

-1
c1 = 6 R2 + O(R 3

).

Dropping higher-order terms in R and setting R := 1 leads to the approx­
imations given in Table I in (3). Note that each of these coefficients is 10
times closer to correct than the corresponding coefficient in (2), and that
E - E min for n = 2 has been reduced by a factor of 27. Applying Theorem 4,
we see that we are already within 2 % of a best approximation. If we choose
cn by this method and set Co = C1 = ... = Cn-l = 0, we derive, from
Theorem 4, a bound on E* given by Saff in [14, p. 113].

To apply the CF approach more seriously, we must solve an eigenvalue
problem (see Section 5) and thus abandon closed-form solutions. One way to
proceed is to follow Section 6, dropping terms in eZ of degree higher than
N = 2n + 2. This means solving an (n + 2) X (n + 2) Hankel eigenvalue
problem, which would be a singular value problem if the coefficients of eZ

were not real. The results are given as (4) in Table I. E - E min has dropped
by an additional factor of 14 for n = 2.
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Still, we can do better if we eliminate the arbitrary cutoff after term
2n + 2. Suppose we solve progressively larger and larger eigenvalue
problems, taking N = 2n + 3, 2n + 4, and so on. After five or six such steps
the coefficients have clearly converged to the limits given in (5). E - E min for
n = 2 has dropped by still another factor of 40, to 0.6 X 10- 5

• At this point
it follows from Theorem 6 that each coefficient is accurate to within about
0.6 X 10- 4 (evidently a conservative bound). In fact, we have now
constructed error curves which are slightly more circular than those for the
true best approximations: compare the last columns in (1) and (5). For a
justification of the existence of this limit Blaschke product, see [2].

Theorem 4 applies to the results in (5), but we can do about twice as well
by taking not Emin but A as a lower bound for E* here. The justification for
this is that A is the norm of the minimal extension of f back to degree - 00 ;

the extension given by e* must have norm at least this large. Thus from (5)
we have the following tight bounds of the form A~ E* ~ E:

n E*

o
1
2
3
4
5

1.30 ± 0.5 X 10- 1

0.5581 ± 0.6 X 10- 3

0.177375 ± 0.2 X 10- 5

0.04336898 ± 0.6 X 10- 7

0.0085686585 ± 0.6 X 10- 9

0.001417607269 ± 0.4 X 10- 11

(true value: 1.32... )
(true value: 0.5584... )
(true value: 0.177376... )

To compute these numbers we have not bothered to search the unit circle for
E so that the bound A~ E* ~ E can be applied directly. Almost as tight
bounds can be derived by estimating E with the triangle inequality by
considering the size of the neglected coefficients c_!' C_ 2'''' in the CF
technique.

For n = 3 the most accurate value for E* we have computed directly is
0.0433689, which is no more accurate than the bound given above and took
a great deal more work. For N ~ 4 the CF bounds are tighter than values we
have computed directly. Indeed, these bounds appear to be somewhat
narrower in breadth than the quantities E* - E~in for the true best approx­
imations given in (1). Thus the CF approach yields estimates for the best
approximation error E* which are typically at least as accurate as the
corresponding error curve (f - p*)(T) is circular. In similar experiments
applied to the more troublesome function IjF(z) (Fig. 2), the CF method
yields curves which are considerably more circular in the E - E min measure
than those of the best approximation: for n = 3 (E - Emin)/E ~ 0.04 (CF),
(E* - E~in)/E* ~ 1. In such a case only E is particularly close to correct,
however, not the coefficients of the CF approximation p(z).
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8. GENERALITY OF THE PHENOMENON

For Chebyshev approximation on a more general region, and/or approx­
imation by rational functions, much of what we have done still applies.
Theorem l--eircular implies best-was already stated in this generality.
Theorem 4-nearly circular implies nearly best-is an extension of this
result and also generalizes immediately. Theorem 2--eircular implies
rational-was stated for rational approximation on the disk, but for regions
other than the disk we derive readily: iff - r maps a Jordan curve r onto a
perfect circle, then f - r is the conformal transplant to the region bounded
by r of a finite Blaschke product. It follows that for approximation by
rational functions of type (n, m) on any Jordan region, the space of possible
m +n + I-winding circular error curves has dimension m +n + 2. Thus
there is good reason to expect best rational approximations on general
domains to exhibit nearly circular error curves.

These results show that nearly circular error curves are worth looking for;
the rest of our work has been a strategy for finding them. Let us consider
approximation by polynomials on a Jordan region n with boundary r
containing the origin. With the aid of a conformal map from n to the unit
disk it is easy to extend the Caratheodory-Fejer theorem as stated to the
region n, and in fact (without the winding number claim) to an arbitrary
simply connected region not equal to all of Co For the CF approximation
technique, however, we need a somewhat different generalization of the C-F
theorem, as follows. This might be called a "reverse Caratheodory-Fejer
theorem" for any Jordan region. Its proof is an extension of the method used
in Section 5 for the unit disk.

THEOREM 12. Let n be a Jordan region containing the orlgzn with
boundary r. Let p(z) E PN have the form p(z) = cn+tZn+ 1 + ... + cNi". Then
there exists a unique extension ofp(z) backwards to a Laurent series

which converges in a neighborhood of z = 00 (except at 00) to a function
which is analytic in the exterior of ti except at 00 and continuous on r, and
which has minimal norm on r ofall such extensions. q(z) maps r to a perfect
circle with winding number ~ n + 1 about the origin, and it is the only
extension ofp in the class described which does this.

Proof. If E is a closed set in the extended plane iC*, let HE denote the set
of functions analytic in the interior of E and continuous at the boundary.
Define r' == {z: l/z E n, and let n' be the Jordan region enclosed by r':
n' == {z: l/z E Q}. We are given the problem of Chebyshev approximation of
cn+I zn+ 1+ ... + CNZNover r out of znH(,_n.
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Step 1: Considering the map z f---4 liz, we see that this is equivalent to
the problem of approximating CNZ-N+... +cn+1z- n- 1 over r out of
z -nH ri'; i.e., there is a one-to-one correspondence between approximation
functions in the two problems which preserves the norm of the error of the
approximation.

Step 2: Let ¢ be a conformal map of il' onto the unit disk D such
that ¢(O) = O. By the Osgood-Caratheodory theorem, ¢ extends to a
continuous homeomorphism of ti' onto f5 with winding number 1. Thus
approximating CNZ-N+ ... +cn+1z- n- 1 over r out of z-nHri , is equivalent
in the above sense to approximating CN[¢-I(Z)]-N + ... +cn+1[r1(Z)]-n-l
over the unit circle S out of Z-nHlf. We have used the fact that a pole at the
origin in il' remains a pole of the same order at the origin in D when
transplanted by ¢- 1, and likewise in the other direction.

Step 3: This problem is, in turn, equivalent to the problem of approx­
imating ZN{CN[¢-I(Z)]-N + ... +cn+1[r1(Z)]-n-l} over S out of zN-nHlf.
Now the Caratheodory-Fejer theorem (Theorem 3) applies, yielding a
Blaschke product with winding number at most N - (n + 1).

Unwinding the three equivalences completes the proof. I

Thus the CF method applies in principle on any Jordan region: Given p
on il, compute CF coefficients Cn' Cn _ poo., Co, c_ p'" and then truncate those
of negative degree. If the truncated terms are small what remains is a
:> n + I-winding nearly circular error function. In practice, implementing this
strategy requires knowledge of a conformal map from il' to the disk.

Theorem 12 may also be extended to cover the limiting case N -> 00, as
used in Section 7, Table I, section (5). According to [2], the conclusions of
the C-F theorem hold for approximation of any Dini-continuous function f
on the unit circle (i.e., f~ 1(1(0 + 11) + f(O -11) - 2f(0))/11 1 d11 < 00 for
each 0) by the tail of a power series. For Theorem 12 to hold with N = 00 it
is therefore enough to require that p be Dini-continuous (say, differentiable)
and that the Jordan curve r be analytic, which ensures that Dini continuity
is preserved under transplantation to the disk.

The drawback of the CF method on a general region is that the terms
cn , ... , C-1"" may not tail off as quickly as for approximation on a disk.
Lemma 7 does not extend to a general region, and so the obvious extensions
of Theorems 10 and 11 are not valid. All of this is easy to see: since a
monomial Cn + 1Zn + I does not, in general, map r to a perfect circle, it does
no good for f to approach such a monomial through R -> 0 or n -> 00. The
more irregular il is, the more the CF method is likely to face this problem.

In any case, Theorems 10 and 11 are not as strong as we would have
liked, and their generalizations, if valid, would also have been incomplete. If
f is not entire, and perhaps does not even have a Taylor series converging
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throughout n, we would still like to know what happens as n -. 00. We have
not answered this question. Until we do, a full generalization to non-circular
regions cannot be expected.

For the case of rational approximation, on the other hand, the analysis is
tougher but the near-circularity phenomenon is apparently quite strong. A
report on the CF method in rational approximation is in preparation.

Note added in proof The CF method turns out to have been considered before, notably by
G. H. Elliott [18 J and M. Hollenhorst [21], though it has not been applied before to the study
of error curves. For a summary and further references see [19 j.

As speculated here in Section 8, both the CF method and the near-circularity phenomenon
extend very strongly to rational approximation on the disk [22 J. Surprisingly, the method also
extends strongly to real approximation on a real interval [19,20]. Extensions to regions other
than a disk are presently being studied by Stephen Ellacott of the Department of Mathematics
at Brighton Polytechnic in Great Britain.

ACKNOWLEDGMENTS

I am indebted to Dr. Martin Gutknecht and Professor Peter Henrici of the Eidgenossische
Technische Hochschule in Zurich for many valuable suggestions, and to the latter for inviting
me to Zurich for the summer during which most of this work was completed. Mr. Cornelio
Rusca also spotted an error in the proof of Theorem 6. This work was supported in part by a
National Science Foundation Graduate Fellowship.

REFERENCES

I. H.-P. BLATT AND V. KLOTZ, Zur Anzahl der Interpolations-punkte polynomialer
TschebyschefT-Approximationen im Einheitskreis, in "Numerische Methoden der Approx­
imationstheorie" (Collatz et al., Eds.), Vol. 4, Birkhiiuser, Basel, 1978.

2. L. CARLESON AND S. JACOBS, Best uniform approximation by analytic functions, Acta
Math. 109 (1963), 219-229.

3. A. CLINE, "Uniform Approximation as a Limit of L z Approximations," Ph.D. disser­
tation, University of Michigan, 1970.

4. S. ELLACOTT AND J. WILLIAMS, Linear Chebyshev approximation in the complex plane
using Lawson's algorithm, Math. Compo 30 (1976), 35-44.

5. G. M. GOLUZIN, Geometric theory of functions of a complex variable, A mer. Math. Soc.
Trans/. 26 (1969).

6. U. GRENANDER AND G. SZEOO, "Toeplitz Forms and Their Applications," Univ. of
California Press, Berkeley/Los Angeles, 1958.

7. M. GUTKNECHT, Ein Abstiegsverfahren fuer nicht-diskrete TschebyschefT-
Approximationsprobleme, in "Numerische Methoden der Approximationstheorie"
(Collatz et a/., Eds.), Vol. 4, Birkhiiuser, Basel, .1978.

8. V. KLOTZ, Gewisse rationale TschebyschelT-Approximationen in der komplexen Ebene, J.
Approx. Theory 19 (1977), 51-60.

9. C. L. LAWSON, "Contributions to the Theory of Linear Least Maximum Approx­
imations," Ph. D. dissertation, UCLA, 1961.



NEAR-CIRCULARITY OF ERROR CURVE 367

10. A. L. LEVIN AND V. M. TIHOMIROV, Approximation of analytic functions by rational
functions, Soviet Math. Dokl. 8 (I967), 622-626.

II. T. S. MOTZKIN AND J. L. WALSH, Zeros of the error function for Tschebycheff approx­
imation in a small region, Proc. London Math. Soc. 13 (1963), 90-98.

12. S. J. POREDA, A characterization of badly approximable functions, Trans. Amer. Math.
Soc. 169 (1972), 249-256.

13. S. J. POREDA, On the convergence of best uniform deviations, Trans. Amer. Math. Soc.
179 (1973),49-59.

14. E. B. SAFF, On the zeros of the error function for Tchebycheff approximation on a disk,
J. Approx. Theory 9 (1973),112-117.

15. D. SARASON, "Function Theory on the Unit Circle," Dept. of Math., Virginia Polytechnic
Institute and State University, Blacksburg, Va., 1978.

16. L. N. TREFETHEN, "Chebyshev Approximation by Polynomials in the Complex Plane,"
Undergraduate thesis, Applied Mathematics Committee, Harvard College, May 1977.

17. J. L. WALSH, "Interpolation and Approximation by Rational Functions in the Complex
Domain," 2nd ed., Colloquium Publications Vol. 20, Amer. Math. Soc., Providence, R.I.,
1956.

18. G. H. ELLIOTT, "The Construction of Chebyshev Approximations in the Complex Plane,"
Ph.D. dissertation, University of London, 1978.

19. M. H. GUTKNECHT, Rational Caratheodory-Fejer approximation on a disk, a circle, and
an interval, in preparation.

20. M. H. GUTKNECHT AND L. N. TREFETHEN, Real polynomial Chebyshev approximation
by the Caratheodory-Fejer method, SIAM J. Numer. Anal., in press.

21. M. HOLLENHORST, "Nichtlineare Verfahren bei der Polynomapproximation," Dissertation
Universitiit Erlangen-Niirnberg, 1976.

22. L. N. TREFETHEN, Rational Chebyshev approximation on the unit disk, Numer. Math., in
press.


